logo

Introduction to Cultural Analytics & Python

How To

  • Interact With This Book

The Course

  • Course Schedule
  • Course Syllabus

The Book

  • 1. The Command Line
  • 2. Python Basics
    • Installation
    • How to Use Jupyter Notebooks
    • Anatomy of a Python Script
    • Variables
    • Data Types
    • String Methods
    • Files and Character Encoding
    • Comparisons & Conditionals
    • Lists & Loops — Part 1
    • Lists & Loops — Part 2
    • Dictionaries
    • Functions
    • Common Python Errors
    • What We’re Not Covering
  • 3. Data Analysis (Pandas)
    • Pandas Basics — Part 1
    • Pandas Basics — Part 2
    • Pandas Basics — Part 3
    • Pandas — Merge Datasets
  • 4. Data Collection (Web Scraping, APIs)
    • User Ethics & Legal Concerns
    • Web Scraping — Part 1
    • Web Scraping — Part 2
    • Git and GitHub
    • Application Programming Interfaces (APIs)
    • Song Genius Data Collection
      • Song Genius API
      • Song Lyrics Collection
      • Song Lyrics Analysis
    • Twitter Data Collection
      • Twitter API Setup
      • Twitter Data Collection
      • Twitter Data Analysis
      • Twitter Data Sharing
    • Reddit Data Collection
  • 5. Text Analysis
    • TF-IDF
      • TF-IDF with HathiTrust Data
      • TF-IDF with Scikit-Learn
    • Topic Modeling
      • Topic Modeling — Overview
      • Topic Modeling — Set Up
      • Topic Modeling — Text Files
      • Topic Modeling — CSV Files
      • Topic Modeling — Time Series
    • Named Entity Recognition
    • Part-of-Speech Tagging
    • Keyword Extraction
  • 6. Network Analysis
    • Network Analysis
    • Make an Interactive Network Visualization
  • 7. Mapping
    • Mapping
    • Geocoding with GeoPy
    • Making Interactive Maps
    • Custom Map Backgrounds
    • Publish Your Map on the Web

Datasets

  • Datasets

Extra Materials

  • Jupyter Tips & Tricks
  • Make Random Student Groups
Powered by Jupyter Book

Data Collection¶

This series of lessons will focus on how to collect cultural data from the internet:

  • User Ethics & Legal Concerns
  • Web Scraping — Part 1
  • Web Scraping — Part 2
  • Git and GitHub
  • Application Programming Interfaces (APIs)
  • Song Genius Data Collection
  • Twitter Data Collection
  • Reddit Data Collection
Pandas — Merge Datasets User Ethics & Legal Concerns

By Melanie Walsh
© Copyright 2021.

Creative Commons License This book is licensed under a Creative Commons BY-NC-SA 4.0 License. The code is licensed under a GNU General Public License v3.0.